International Journal of Energy Engineering          
International Journal of Energy Engineering(IJEE)
Frequency: Yearly
Editor-in-Chief: Prof. Sri Bandyopadhyay(Australia)
Novel Bio-Degradable Lignin Reinforced NBR Composites
Full Paper(PDF, 7285KB)
Lignin is evolved from wood having feature of good biodegradation properties. The samples were exposed to standard culture media for fixed intervals of time and evaluated for changes in their physical properties, thermal stability and morphology. Rubber vulcanizates were analyzed for physico-mechanical properties and thermal stability, and compared with fillers like phenolics resin and carbon black and lignin. Fillers are used to reinforce polymers to improve properties of matrices for biological activity. Lignin reinforced rubber biocomposite has been found to produce superior elongation properties compared to phenolic resin but inferior to carbon black. The development of commercially viable “green products” based on natural resources for both matrices and reinforcements for a wide range of applications is on the rise. This effort includes new pathways to produce natural polymers with better mechanical properties and thermal stability using nanotechnology and use of natural polymers to make biodegradable plastics and their composites with lignin. The present study was initiated to isolate and characterize a number of NBR-degrading bacteria from various ecosystems in India. It also suggests that rubber-degrading bacteria might be useful for the disposal of discarded rubber products (waste management). This paper presents the effect of different bacteria through in vitro antimicrobial activity in NBR, NBR with phenolic resin, NBR with carbon black and Lignin reinforced Rubber composites. These NBR composites were tested against five pathogenic bacteria Bacillus subtilis, Escherichia coli, Streptococcus mutans, Staphylococcus aureus and Pseudomonas aeruginosa isolated from clinical samples mainly for SEM studies.
Keywords:Bio-Degradable; Lignin; NBR; SEM
Author: Kavita Agarwal1, Mahender Prasad1, Rishi Sharma2, Dipak Kumar Setua1
1.DMSRDE (DRDO), Kanpur
  1. R. Gautam, A.S. Bassi, E.K. Yanful, A Review of Biodegradation of Synthetic Plastic and Foams. Appl Biochem Biotechnol. pp. 141(2007).
  2. J. Kyrikou, D. Briassoulis, Biodegradation of Agricultural Plastic Films: A Critical Review. J Polym Environ. 15, pp. 125 (2007).
  3. R. Jayasekara, I. Harding, I. Bowater, G. Lonergan, Biodegradability of Selected Range of Polymers and Polymer Blends and Standard Methods for Assessment of Biodegradation. J Polymer Environ. 13, pp 231, (2005).
  4. M. Van Der Zee, Structure-Biodegradability Relationships of Polymeric Materials, 1, 1, (1997).
  5. M. Acemoglu, Chemistry of polymer biodegradation and implications on parenteral drug delivery. Int J Pharm. 277, pp.133, (2004).
  6. J. M.Anderson,M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv Drug Deliv Rev. 28 (1), pp. 5 (1999).
  7. M.N. Satheesh Kumar, A.K. Mohanty, L. Erickson, M. Mishra, J. Biobased Mat. & Bioenergy, 3, pp. 1 (2009).
  8. J. Feranc, Z. Kramárova, P. Alexy, M. Ďuračka, I. Hudec, P. Suri, A. Karvas and M. Hajsova, Application of lignin in rubber blends, Chem. Listy 101, PMA 2007 & 19th SRC Posters, pp. s44 (2007).
  9. D. K. Setua, M.K.Shukla, V. Nigam, H. Singh, and G.N. Mathur, lignin Reinforced Rubber Composites, Polymer Composites, 21(6), pp. 988 (2000).
  10. I.W. Pearl, The Chemistry of Lignin. Marcel Dekker, Inc.: New York. pp. 339 (1967).
  11. K. Freudenberg , A.C. Neish, Constitution and Biosynthesis of Lignin. Ed. Springer, G.F. and Kleinzeller, A. Springer-Verlag: New York. pp. 129 (1968).
  12. P. Karhunen, P. Rummakko, J. Sipilä, G. Brunow, I. Kilpeläinen, Dibenzodioxocins, A Novel Type of Linkage in Softwood Lignins. Tetrahedron Letters 36 (1). pp. 167 (1995).
  13. C. Tan, R. P. Smith, J. K Srimani, K. A Riccione, S. Prasada, M. Kuehnand L. You, The inoculum effect and band-pass bacterial response to periodic antibiotic treatment, Molecular Systems Biology, 8; Article number 617 (2012); (doi:10.1038/msb.2012.49 Citation: Molecular Systems Biology 8:617)
  14. [15] Professor Tim Foster, Introduction To Microbiology (https://www.Tcd.Ie/Biology_Teaching_Centre/Assets/Pdf/By1101/ Tfby1101/Tfby1101-Lecture1-2012-Bw.Pdf)
  15. R. Bentley, R. Meganathan, Biosynthesis of vitamin K (menaquinone) in bacteriaMicrobiol. Rev. 46 (3), pp. 241 (1982).
  16. S. Hudault, J. Guignot, A.L Servin, Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection, Gut, 49(1), pp. 47 (2001).
  17. G. Reid, J. Howard, B.S.Gan, "Can bacterial interference prevent infection?". Trends Microbiol. 9(9), pp. 424 (2001).
  18. D. K. Setua, S.K. Chakraborty, S.K. De, and B.K. Dhindaw, Scanning Electron Microscopy studies on the mechanism of rubber tear, J. Scanning Electron Micros., III, pp. 973 (1982).
  19. D.K. Setua, Polymeric Materials: New Renewable Resources, Eds L.H. Sperling and C. Carraher, Plenum Publishing Company, NY, Sec., 6(2), pp. 275 (1985).
  20. D.K. Setua and S.K. De, Scanning Electron Microscopy studies on mechanism of tear fracture of styrene butadiene rubber, J. Mat. Sci., 18, 847 (1983).
  21. D.K. Setua, Scanning Electron Microscopy studies on Thermo-Oxidative Ageing of Polychloroprene Rubber, Poly. Degrad and Stab., 12 (2), 169 (1985). [23] H. James, Jorgensen1 and Mary Jane Ferraro, Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices, Medical Microbiology,:49 (1 December) pp. 1749 Cid (2009).
  22. Testing_at_WVDL. pdf (C.Donald, Sockett DVM, PhD Wisconsin Veterinary Diagnostic Laboratory, 01-04-13Antimicrobial Susceptibility Testing by Donald C. Sockett DVM, PhD Wisconsin Veterinary Diagnostic Laboratory 01-04-13 )
  23. Antimicrobial%20Susceptibility%20Testing.pdf (Manual of Antimicrobial Susceptibility Testing by Stephen J. Cavalieri ... [et al.]. , 2005)
  24. (Inoculum%20Preparation%20and%20Development). pdf, Inoculum Preparation and Development.
  25. C. Jiang, H. He, H. Jiang, L. Ma, D. M. Jia, Nano-lignin filled natural rubber composites: Preparation and characterization, eXPRESS Polymer Letters,7(5), pp. 480, (2013).
  26. E. Yalçın, K. Çavuşoğlu, Structural Analysis and Antioxidant Activity of a Biosurfactant Obtained from Bacillus subtilis RW-I, Turkish Journal of Biochemistry–Turk J Biochem, 35 (3) ,pp. 243 (2010).
  27. A. Kumar, P. Saini and J.N. Srivastava, Production of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis, Indian Journal of Experimental Biology, 47, pp. 57 (2009).
  28. N. Buensanteai1, K. Thumanu, M. Sompong, D. Athinuwat and S. Prathuangwong, The FTIR spectroscopy investigation of the cellular components of cassava after sensitization with plant growth promoting rhizobacteria, Bacillus subtilis CaSUT007, African Journal of Microbiology Research , 6(3), pp. 603 (2012).
  29. A. Wijanarko, H. Yuliani, H. Hermansyah and M. Sahlan, Isolation and Properties Characterization of Biosurfactant Synthesized by Pyrene Degrading Bacillus subtilis C19, J. Chem. Chem. Eng., 6, pp. 889 (2012).