International Journal of Energy Engineering          
International Journal of Energy Engineering(IJEE)
Frequency: Yearly
Editor-in-Chief: Prof. Sri Bandyopadhyay(Australia)
Erythrosine B Dye Based Polymethylmethacrylate-Silica Films for Luminescent Solar Collector Applications
Full Paper(PDF, 538KB)
Luminescent solar concentrator samples using PMMA / SiO2 composites as the matrix with Erythrosine B are prepared. Three films of PMMA/ silica composition ration (70:30) %, (50:50) % and (30:70) % are prepared. The photostability of Erythrosine B doped PMMA/SiO2 composites is examined through four weeks exposure to sunlight. The obtained results show that the stability of collector increases with the increasing silica content. Moreover, the transition energy for electrons are direct allowed transition for all examined samples and the value of optical gap energy (Eg) increases with the increasing the silica content. However, the tail width of localized states in the band gap (Eu) decreases with the increasing exposure time due to the degradation of the dye. Emission spectra and quantum efficiency are also investigated. Erythrosine B is shown to have a higher fluorescence quantum yield in (30:70) % matrix. Collectively, these results suggest that PMMA/SiO2 composites provide the better system for use in fluorescent solar collector systems.
Keywords:PMMA; PMMA/SiO2 Composites; Erythrosine B; Photostability; Fluorescence Quantum Yield.
Author: S. M. Reda1
1.Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
  1. R. Compagnon, J.L. Scartezzini and B. Paule, Application of nonimaging optics to the development of new daylighting systems, In: Proceedings of ISES Solar World Congress, Budapest, Hungary, 1993.
  2. J. Page, J. Kaempf and J.L, Scatrezzini, Assessing daylighting performances of electrochromic glazings coupled to an anidolic device, In: Proceedings of ISES Solar World Congress, Gothenburg, Sweden, 2003.
  3. J.W.E. Wiegman and E. van der Kolk, "Building integrated thin film luminescent solar concentrators: Detailed efficiency characterization and light transport modeling", Solar Energy Materials and Solar Cells, vol. 103, pp. 41–47, 2012.
  4. W. Pohl and C. Anslem, Natural room illumination using sunlight, In: Proceedings of World Renewable Energy Congress VII, Cologne, Germany, 2002.
  5. A. Alan, B. F Earp Jim and B. S. Geoff, "Absorption tails and extinction in luminescent solar concentrators", Solar Energy Materials and Solar Cells, vol. 95, pp. 1157–1162, 2011.
  6. H. Ries, R. Zaibel, E. Dagan and J. Karni, "An astigmatic corrected target-aligned heliostat for high concentration", Solar Energy Materials and Solar Cells, vol. 37, pp. 191–202 , 1995.
  7. W.H. Weber and J. Lambe, "Luminescent greenhouse collector for solar radiation", Applied Optics, vol. 15, pp. 2299–2300, 1976.
  8. A.M. Hermann, "Luminescent solar concentrators––a review", Solar Energy, vol. 29 pp. 323–329, 1982.
  9. R. Reisfeld and C.K. Jorgensen, "Luminescent solar concentrators for energy conversion", Structure and Bonding, vol. 49 pp. 1–36, 1982.
  10. A.A. Earp, G.B. Smith, P.D. Swift and J. Franklin, "Maximizing the light output of a luminescent solar concentrator", Solar Energy, vol. 76 pp. 655–667, 2004.
  11. T. B. Sheldon, E. L. Gretchen, S. H. Melinda, D.M. S. John, B. M. Jason, T. B.Gregg, T. B. Timothy, M. L. Joshua, R. B. Dustin, Z. Yu-Zhong and P. W. Bruce, "Optimized excitation energy transfer in a three-dye luminescent solar concentrator", Solar Energy Materials and Solar Cells, vol. 91 pp. 67–75, 2007.
  12. D. Kuang, C. Klein, S. Ito, J.-E. Moser, R. Humphry-Baker, N. Evans, F. Duriaux, C. Grنtzel, S.M. Zakeeruddin and M. Grنtzel, "High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte", Advanced Materials, vol. 19, pp. 1133–1137, 2007.
  13. W.J. Jones, A. Grofcsik, M. Kubinyi and D. Thomes, "Modulated absorption spectroscopy and the triplet state: photoinduced absorption/bleaching in Erythrosin B, rose benzyl and eosin Y", Journal of Molecular Structure, vol. 792, pp. 121–129, 2006.
  14. K. Maruszewski, "Spectroscopic properties of pure and coumarin 153-doped thin films of sol-gel silica xerogels", Journal of Molecular Structure, vol. 479, pp. 53, 1999.
  15. H.M. Zidan and M. Abu-Elnader, "Structure and optical properties of pure PMMA and metal chloride-doped PMMA films", Physica B, vol. 355, pp. 308-317, 2005.
  16. A.L. Fahrenbruch and R. H-Bube, "Fundamental of solar cells and photovoltaic solar energy conversion", Academic Press, California, 1983. p.48.
  17. N.A. Bakr, A.F. Mansour and M. Hammam, "Optical and thermal spectroscopic studies of luminescent dye doped polymethylmethacrylate as solar concentrators", J. Appl. Polym. Sci, vol. 74, pp. 3316–3323, 1999.
  18. G. Hungerford, K. Suhling and J.A. Ferreira, "Comparison of the fluorescence behavior of rhodamine 6G in bulk and thin film tetraethylorthosilicate derived sol-gel matrices", J. Photochem. Photobiol. Chem, vol. 129, pp. 71-80, 1999.
  19. H. Abbas, K.P. Tiwary, L.S.S. Singh, M. Zulfequar and Z.H. Zaidi, "Spectroscopic study of sulforhodamine 640-doped sol-gel silica", J. Luminescence, vol. 114 pp. 162-166, 2005.
  20. J.N. Demas and G.A. Crosby, "The measurement of photoluminescence quantum yields", J. Phys. Chem, vol. 75, pp. 991–1023, 1971.
  21. C. Vijila and A. Ramalingam, "Photophysical characteristics of cumarin 485 dye doped polymethylmethacrylate modified with various additives", J. Mater. Chem, vol. 11 pp. 749–755, 2001.