International Journal of Energy Engineering          
International Journal of Energy Engineering(IJEE)
ISSN:2225-6563(Print)
ISSN:2225-6571(Online)
Frequency: Yearly
Editor-in-Chief: Prof. Sri Bandyopadhyay(Australia)
Proton-Conducting Composite Membranes Based on Sulfonated Poly(ether sulfone) and Surface-Modified Tin Phosphate
Full Paper(PDF, 253KB)
Abstract:
Organic/inorganic composite membranes were prepared by dispersing m-sulfophenyl-group-modified layered tin phosphate hydrate particles (SnPP-SPP) or nanosheets (SnPNS-SPP) in sulfonated poly(ether sulfone) (SPES). The chemical stabilities, as evaluated by Fourier-transform infrared spectroscopy and water-uptake measurements, were improved by dispersion of SnPP-SPP or SnPNS-SPP into the SPES matrix. The proton-conducting properties of the composite membranes were improved by the sulfophenyl group modification; among the composite membranes, the membrane containing 10 vol% SnPNS-SPP showed the highest conduc-tivity of 8.0 × 10−2 S cm−1 at 150 °C under saturated water-vapor pressure.
Keywords:Organic/Inorganic Nanocomposite; Proton Conductors; Fuel Cell
Author: Shoichi Sugata1, Shinya Suzuki1, Masaru Miyayama1
1.School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
References:
  1. Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, “Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C,” Chem. Mater., vol. 15, pp. 4896-4915, 2003.
  2. G. Alberti, M. Casciola, L. Massinelli, and B. Bauer, “Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C),” J. Membr. Sci., vol. 185, pp. 73-81, 2001.
  3. W. H. J. Hogarth, J. C. Diniz da Costa, and G. Q. Lu, “Solid acid membranes for high temperature (140 °C) proton exchange membrane fuel cells,” J. Power Sources, vol. 142, 223–237, 2005.
  4. S. Hara, H. Sakamoto, M. Miyayama, and T. Kudo, “Proton-conducting properties of hydrated tin dioxide as an electrolyte for fuel cells at intermediate temperature,” Solid State Ionics, vol. 154-155, pp. 679-685, 2002.
  5. N. H. Jalani, K. Dunn, and R. Datta, “Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells,” Electrochim. Acta, vol. 51, 553–560, 2005.
  6. A. Saccà, A. Carbone, E. Passalacqua, A. D’Epifanio, S. Licoccia, et al., “Nafion–TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs),” J. Power Sources, vol. 152, pp. 16-21, 2005.
  7. M. L. Di Vona, A. D’Epifanio, D. Marani, M. Trombetta, E. Traversa, and S. Licoccia, “SPEEK/PPSU-based organic–inorganic mem-branes: Proton conducting electrolytes in anhydrous and wet environments,” J. Membr. Sci., vol. 279, pp. 186-191, 2006.
  8. M. L. Hill, Y. S. Kim, B. R. Einsla, and J. E. McGrath, “Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copo-lymer composite membranes for proton exchange membrane fuel cells,” J. Membr. Sci., vol. 283, pp. 102-108, 2006.
  9. S. Licoccia and E. Traversa, “Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids,” J. Power Sources, vol. 159, pp. 12-20, 2006.
  10. B. Mecheri, A. D’Epifanio, M. L. Di Vona, E. Traversa, S. Licoccia, and M. Miyayama, “Sulfonated polyether ether ketone-based composite membranes doped with a tungsten-based inorganic proton conductor for fuel cell applications,” J. Electrochem. Soc., vol. 153, pp. A463-A467, 2006.
  11. J.-M. Thomassin, C. Pagnoulle, D. Bizzari, G. Caldarella, A. Germain, and R. Jérôme, “Improvement of the barrier properties of Nafion® by fluoro-modified montmorillonite,” Solid State Ionics, vol. 177, 1137–1144, 2006.
  12. S. M. J. Zaidi, “Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate,” Electro-chim. Acta, vol. 50, pp. 4771-4777, 2005.
  13. L. Du, X. Yan, G. He, X. Wu, Z. Hu and Y. Wang, “SPEEK proton exchange membranes modified with silica sulfuric acid nanopar-ticles,” Int. J. Hydrogen Energy, vol. 37, pp. 11853-11861, 2012.
  14. Z. Q. Jiang, X. S. Zhao and A. Manthiram, “Sulfonated poly(ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells,” Int. J. Hydrogen Energy, vol. 38, pp. 5875-5884, 2013.
  15. M. M. Hasani-Sadrabadi, S. H. Emami, R. Ghaffarian, and H. Moaddel, “Nanocomposite membranes made from sulfonated poly(ether ether ketone) and montmorillonite clay for fuel cell applications,” Energy Fuels, vol. 22, pp. 2539-2542, 2008.
  16. Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath, “Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications,” J. Membr. Sci., vol. 212, pp. 263-282, 2003.
  17. C. H. Lee, K. A. Min, H. B. Park, Y. T. Hong, B. O. Jung, and Y. M. Lee, “Sulfonated poly(arylene ether sulfone)–silica nanocomposite membrane for direct methanol fuel cell (DMFC),” J. Membr. Sci., vol. 303, pp. 258-266, 2007.
  18. S. Wen, C. Gong, W. C. Tsen, Y. C. Shu, and F. C. Tsai, “Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells,” Int. J. Hydrogen Energy, vol. 34, pp. 8982-8991, 2009.
  19. D. J. Kim, H. Y. Hwang, S. Y. Nam, and Y. T. Hong, “Characterization of a composite membrane based on SPAES/sulfonated mont-morillonite for DMFC application,” Macromol. Res., vol. 20, pp. 21-29, 2012.
  20. Z. Hu, G. He, S. Gu, Y. Liu and X. Wu, “Montmorillonite-Reinforced Sulfonated Poly(phthalazinone ether sulfone ketone) Nanocom-posite Proton Exchange Membranes for Direct Methanol Fuel Cells,” J. Appl. Polym. Sci., vol. 131, p. 39852, 2014.
  21. Y. Daiko, H. Sakamoto, K. Katagiri, H. Muto, M. Sakai, and A. Matsuda, “Deposition of ultrathin Nafion layers on sol–gel-derived phenylsilsesquioxane particles via layer-by-layer assembly fuel cells and energy conversion,” J. Electrochem. Soc., vol. 155, pp. B479-B482, 2008.
  22. G. Alberti, M. Casciola, U. Costantino, G. Levi, and G. Ricciardi, “On the mechanism of diffusion and ionic transport in crystalline insoluble acid salts of tetravalent metals. I. Electrical conductance of zirconium bis(monohydrogen ortho-phosphate) monohydrate with a layered structure,” J. Inorg. Nucl. Chem., vol. 40, pp. 533-537, 1978.
  23. Y. Kawakami and M. Miyayama, “Proton conducting properties of layered metal phosphate hydrates,” Key Eng. Mater., vol. 320, pp. 267-270, 2006.
  24. Y. Kozawa, S. Suzuki, and M. Miyayama, “Proton conducting properties of sulfonated poly(etheretherketone) composite membranes with layered tin phosphate hydrates at intermediate temperatures fuel cells and energy conversion,” J. Electrochem. Soc., vol. 156, pp. B1401-B1405, 2009.
  25. D. Yoshimune, S. Sugata, S. Suzuki, and M. Miyayama, “Proton conduction in composite membranes of sulfonated hydrocarbon elec-trolyte and layered tin phosphate hydrates fuel cells and energy conversion,” J. Electrochem. Soc., vol. 159, pp. B91-B95, 2012.
  26. D. M. Kaschak, S. A. Johnson, D. E. Hooks, H. N. Kim, M. D. Ward, and T. E. Mallouk, “Chemistry on the edge:  A microscopic anal-ysis of the intercalation, exfoliation, edge functionalization, and monolayer surface tiling reactions of α-zirconium phosphate,” J. Am. Chem. Soc., vol. 120, pp. 10887-10894, 1998.
  27. T. Sasaki and M. Watanabe, “Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate,” J. Am. Chem. Soc., vol. 120, pp. 4682-4689, 1998.
  28. L. Wang, Y. Omomo, N. Sakai, K. Fukuda, and I. Nakai, et al., “Fabrication and characterization of multilayer ultrathin films of exfoliated MnO2 nanosheets and polycations,” Chem. Mater., vol. 15, pp. 2873-2878, 2003.
  29. K. Nakamura, Y. Oaki and H. Imai, “Monolayered Nanodots of Transition Metal Oxides,” J. Am. Chem. Soc., vol. 135, pp. 4501-4508, 2013.
  30. D. Marani, A. D’Epifanio, E. Traversa, M. Miyayama, and S. Licoccia, “Titania nanosheets (TNS)/sulfonated poly ether ether ketone (SPEEK) nanocomposite proton exchange membranes for fuel cells,” Chem. Mater., vol. 22, pp. 1126-1133, 2009.
  31. Y. Kozawa, S. Suzuki, M. Miyayama, T. Okumiya, and E. Traversa, “Proton conducting membranes composed of sulfonated poly(etheretherketone) and zirconium phosphate nanosheets for fuel cell applications,” Solid State Ionics, vol. 181, pp. 348-353, 2010.
  32. S. Sugata, S. Suzuki, M. Miyayama, E. Traversa, and S. Licoccia, “Effects of tin phosphate nanosheet addition on proton-conducting properties of sulfonated poly(ether sulfone) membranes,” Solid State Ionics, vol. 228, pp. 8-13, 2012.
  33. G. Alberti, E. Giontella, and S. Murcia-Mascaós, “Mechanism of the formation of organic derivatives of γ-zirconium phosphate by to-potactic reactions with phosphonic acids in water and water−acetone media,” Inorg. Chem., vol. 36, pp. 2844-2849, 1997.
  34. S. Yamanaka and M. Hattori, “Exchange reaction between HPO42− and C6H5OPO32− in a heterogeneous system with γ-zirconium phos-phate, Zr(HPO4)2•2H2O,” Chem. Lett., vol. 8, pp. 1073-1076, 1979.
  35. S. Yamanaka, K. Sakamoto, and M. Hattori, “Mechanism for the heterogeneous exchange of the interlayer phosphate groups of γ-zirconium phosphate with phenyl phosphate groups,” J. Phys. Chem., vol. 88, pp. 2067-2070, 1984.
  36. G. Alberti, U. Costantino, S. Allulli, and N. Tomassini, “Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds (R = organic radical): A new class of materials having layered structure of the zirconium phosphate type,” J. Inorg. Nucl. Chem., vol. 40, pp. 1113-1117, 1978.
  37. M. B. Dines and P. M. Digiacomo, “Derivatized lamellar phosphates and phosphonates of M(IV) ions,” Inorg. Chem., vol. 20, pp. 92-97, 1981.
  38. G. Alberti and M. Casciola, “Layered metalIV phosphonates, a large class of inorgano-organic proton conductors,” Solid State Ionics, vol. 97, pp. 177-186, 1997.
  39. G. Alberti, M. Casciola, A. Donnadio, P. Piaggio, M. Pica, and M. Sisani, “Preparation and characterisation of α-layered zirconium phosphate sulfophenylenphosphonates with variable concentration of sulfonic groups,” Solid State Ionics, vol. 176, pp. 2893-2898, 2005.
  40. F. Wang, M. Hickner, Q. Ji, W. Harrison, J. Mecham, T. A. Zawodzinski, and J. E. McGrath, “Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization,” Macromol. Symp., vol. 175, pp. 387-396, 2001.
  41. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, “Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: Candidates for new proton exchange membranes,” J. Membr. Sci., vol. 197, pp. 231-242, 2002.
  42. E. Montoneri, M. C. Gallazzi, and M. Grassi, “Organosulphur phosphorus acid compounds. Part 1. m-Sulphophenylphosphonic acid,” J. Chem. Soc., Dalton Trans., pp. 1819-1823, 1989.
  43. H. G. M. Edwards, D. R. Brown, J. R. Dale, and S. Plant, “Raman spectroscopic studies of acid dissociation in sulfonated polystyrene resins,” J. Mol. Struct., vol. 595, pp. 111-125, 2001.
  44. D. Whittington and J. R. Millar, “Infra-red absorption spectra of ion-exchange resins,” J. Appl. Chem. (London, U. K.), vol. 18, pp. 122-128, 1968.
  45. P. Krishnan, J. S. Park, and C. S. Kim, “Preparation of proton-conducting sulfonated poly(ether ether ketone)/boron phosphate composite membranes by an in situ sol–gel process,” J. Membr. Sci., vol. 279, pp. 220-229, 2006.
  46. M. Cappadonia, J. W. Erning, S. M. Saberi Niaki, and U. Stimming, “Conductance of Nafion 117 membranes as a function of temperature and water content,” Solid State Ionics, vol. 77, pp. 65-69, 1995.