International Journal of Energy Engineering          
International Journal of Energy Engineering(IJEE)
ISSN:2225-6563(Print)
ISSN:2225-6571(Online)
Frequency: Yearly
Editor-in-Chief: Prof. Sri Bandyopadhyay(Australia)
More Efficient Production Line: Desalination Plants by Using Reverse Osmosis
Full Paper(PDF, 275KB)
Abstract:
The cost analysis of desalinated water cubic meter produced by reverse osmosis has been widely studied. However, the production lines capacities in these plants are normally different. Usually, a desalination plant has a number of lines with identical productions, whose summary corresponds to the total production capacity. Cost optimization of the most efficient production line affects the scale economy. The destination of this article is within reach of small desalination plants in the range between 500 to 15,000 m3/day in the Canary Islands. This specified range is the most established in the islands. More than 90% of the desalination plants have a production capacity corresponding to the selected range. The methodology used consists in calculating each one of the costs involved in the seawater desalination process, applying actual prices and obtaining a graphic serial according to prices tolerance, from -5% to a value of +5%. Concerning staff costs, it has been recovered data from the iron and steel industrial sector collective agreement of the Autonomous Community. In this article it presents that all the elements directly affect each one of the costs, equations and formula based on factors affecting each one of them, with actual market prices in the Autonomous Community of Canary Islands, making all calculations and obtaining a family of costs graphics for each one. As an innovative and original article, it presents the real costs for small desalination plants, for the established range. It presents a new cost, to bear in mind, according to current regulations, which is the environmental cost, based, among other things, on solving the problem of brine spills directly into the sea. Lastly, this article, as a final result, presents the total value of the cost in €/m3 with the results and graphics for each plant between the before established range in the Canary Islands, obtaining according to them, the most efficient production line. The results are based on a small fluctuating scale economy. The aim of our work is to study the influence of the fouling factor and temperature according to the desired production on the cost in €/m3. Based on it we study the operational and functional costs searching for the production line with the best efficiency. The temperature and the fouling factor are fundamental, observing that there is a saving of 0.3 €/m3. The most efficient production line for reverse osmosis desalination plants in the range of 500 to 15,000 m3/day correspond to a production of 5,000 m3/day, with a conversion factor of 45% at 21ºC of temperature and with a fouling factor of 1.
Keywords:Reverse Osmosis; Unit Costs; Canary Islands; Desalination; Operating Parameters
Author: Luis Alvarez1, J. Jaime Sadhwani2, José Feo3
1.Physics Department, University of Las Palmas de Gran Canaria
2.Process Engineer Department, University of Las Palmas de Gran Canaria
3.Electronic and Automatic Engineer Department, University of Las Palmas de Gran Canaria
References:
  1. Milliarium Aureum, S.L.. “Desalinizadoras y desalobradoras”. Ingeniería Civil y medio Ambiente. (2004).
  2. Hernández Suárez, Manuel. “Datos estadísticos sobre el agua en Canarias”. Centro Canario del Agua. (2007).
  3. Valero, Antonio., Uche Javier., Serra Luis. “La desalinización como alternativa al PHM” Gobierno de Aragón. (2001).
  4. Poullikkas. A. “Optimization algorithm for reverse osmosis desalination economics” Desalination, 133, 75-81. (2001).
  5. Prats Rico, D., Chillón Arias, M.F. “A reverse osmosis potable water plant at Alicante University: first years of operation”. [4] Desalination, 137, 91-102. (2001).
  6. Cámara, J.M., Melián, M.A.: Las técnicas de desalación y sus costes”. Agricultura. (2002).
  7. S.A. Avlonitis.: Operational water cost and productivity improvements for small-size RO desalination plants. Desalination, 142, 295-304. (2002).
  8. G. F. Leitner.: Water cost analysis … we need to do better. Desalination and water reuse. 5, 24-27. (1995).
  9. A. Malek, M. N. A. Hawlader and J. C. Ho.: Design and economics of RO seawater desalination. Desalinaton, 105, 245-261. (1996).
  10. M. Pappas and K. Moutesidis.: Remote Operation and automation for RO plants. Final year project. TEI Halkidas. (2001).
  11. Hafez, A., El-Manharawy, S.: Economics of seawater RO desalination in the Red Sea region, Egypt. Part 1. A case study. Desalination, 153 (1-3), pp 335-347. (2003).
  12. S. El-Manharawy and. A. Hafez.: Molar ratios as a useful tool for prediction of scaling potential inside RO system. Desalination 136, 243-254. (2000).
  13. S. El-Manharawy and. A. Hafez.: Technical management of RO system. Desalination 131, 173-188. (2000).
  14. S. El-Manharawy and. A. Hafez.: water type and guidelines for RO system design. Desalination 139, 97-113. (2001).
  15. O. Sallangos and E. Kantilaftis.: Operating experience of the Dhekelia seawater desalination plant. Desalination 139, 115-123. (2001).
  16. M. Faigon. Process control of Larnaca seawater RO plant. Desalination 138, 297-298. (2001).
  17. Martínez Vicente, David. “Estudio de la viabilidad técnico-económica de la desalación de agua de mar por ósmosis inversa”. Tesis Doctoral. Universidad de Murcia. (2002).
  18. Latorre, Manuel. “Costes económicos y medioambientales de la desalinización de agua de mar”. IV Congreso Ibérico de Gestión y Planificación del Agua. (2004).
  19. Wilf M., Bartels C. “Optimization of seawater RO systems design”. Desalination, 173, 1-12. (2005).
  20. Luis Castilla. “Viabilidad económica y uso sostenible de las nuevas fuentes de agua”. Acciona. (2006).
  21. Akili D. Khawaji, Ibrahim K. Kutubkhanah, Jong-Mihn Wie. “Advances in seawater desalination technologies”. Desalination, 221, 47-69. (2008).
  22. Salah Frioui, Rabah Oumeddour. “Investment and production costs of desalination plants by semi-empirical method”. Desalination, 223, 457-463. (2008).
  23. Catherine Charcosset. “A review of membrane processes and renewable energies for desalination”. Desalination, 245, 214-231. (2009).
  24. Software ROSA, versión 7.2.1, Reverse Osmosis System Analysis for FILMTECTM Membranas.
  25. Convenio Colectivo del sector “Siderometalurgia en la Provincia de Las Palmas” de la Consejería de Empleo, Industria y Comercio, firmado el 26 de junio de 2009 en la Provincia de Las Palmas.
  26. Manual para la implantación de Sistemas de depuración en pequeñas poblaciones, CENTA y CEDEX del 3 de marzo de 2011.
  27. BOE, número 77. Orden ITC/688/2011, de 30 de marzo de 2011. (2011).